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Our well established model potential is applied to compute the thermo-
dynamical properties like internal energy (E), entropy (Shs), Helmholtz free
energy (F ), heat of mixing (�E) and entropy of mixing(�S) of Rbc1Csc2
liquid binary alloys as a function of concentration at constant temperature
and pressure. To introduce exchange and correlation effects, the local field
correction functions due to Hartree, Taylor and Sarkar et al. are used. It is
found that thermodynamical properties of Rbc1Csc2 liquid binary alloys
are sensitive to the form of the model potential used, structural part of
the energy, form of the local field correction function and volume of the
mixing. The theory explains the symmetry of heat of mixing and entropy
of mixing. Thus, the proper choice of the model potential along with the
local field correction function plays an important role in the study of the
thermodynamical properties of Rbc1Csc2 liquid binary alloys. This confirms
the applicability of our model potential in explaining the thermodynamics
of liquid Rbc1Csc2 liquid binary alloys.

Keywords: pseudopotential; thermodynamical properties; internal energy;
entropy; Helmholtz free energy; heat of mixing; entropy of mixing

1. Introduction

A well established technique based on the Gibbs–Bogoliubov (GB) inequality was
effectively used in the past [1–7] to investigate the thermodynamical properties of
liquid binary alloys using pseudopotential theory. In these studies [1–7], it was found
that thermodynamical properties of liquid binary alloys are sensitive to the form of
the model potential used, structural part of the energy, form of the local field
correction function and volume of the mixing.

The general theory is based on results which are pertaining to three distinct areas
of current interest. First, there exists a theory of pseudopotentials developed by
Harrison [8]. This enables one to write down the energy of an alloy in terms of the
pseudopotentials and partial structure factors. Except for very special circumstances,
however, the latter are not sufficiently well known for most purposes. Also, it is
really the free energy that is of prime interest at high temperatures [9]. It has been
known for some time [10] that for pure liquid metals, at least the structure factors
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resemble closely those of hard spheres. Faber [11] has shown that the corresponding
entropies can be characterised by hard sphere behaviour. This brings us to our
second area of interest, namely, the thermodynamics of hard sphere systems, which
has been studied by Lebowitz [12], Frisch and Lebowitz [13] and Lebowitz and
Rowlinson [14]. As a result, it is now possible to write down in closed form Percus–
Yevick (PY) approximation the thermodynamic quantities of interest including
partial structure factors and free energies for mixtures of hard spheres. There is an
indication that such structure factors might be useful for the interpretation of X-ray
and neutron form factors in some binary alloy systems [11,15,16]. Finally, the precise
way of linking up the formal hard sphere results with the pseudopotential technique
is provided by the Gibbs–Bogoliubov (GB) inequality [17,18]. This states that if the
Hamiltonian for a system is regarded as that for a reference system plus
a perturbation, then the Helmholtz free energy for the reference system plus the
expectation value of the perturbation averaged over the reference system is greater
than or equal to the Helmholtz free energy of the actual system.

Hence, we considered it worthwhile to compute the thermodynamical properties
of liquid binary alloys using our own model potential [19–24]. In the present article
our well established model potential [19–24] is applied to compute the thermo-
dynamical properties like internal energy (E), entropy (Shs), Helmholtz free
energy (F ), heat of mixing (�E) and entropy of mixing (�S) of Rbc1Csc2 liquid
binary alloys as a function of concentration at constant temperature and pressure.
To introduce the exchange and correlation effects, the local field correction functions
due to Hartree [8], Taylor [25] and Sarkar et al. [26] are used.

The present form of the model potential in real space [19–24] is:

WBðrÞ ¼ 0; r5rc;

¼ �
Ze2

r

� �
1� exp

�r

rc

� �� �
; r � rc: ð1Þ

The corresponding bare-ion form factor in the reciprocal space [19–24] is
given by:

WB qð Þ ¼
�4�Ze2

�q2

� �
cos qrcð Þ �

qrcð Þ exp �1ð Þ

1þ q2r2c

� �
sin qrcð Þ þ qrcð Þ cos qrcð Þ
� 	� �

: ð2Þ

Here Z, e, �, q and rc are the valence, electronic charge, atomic volume, wave
vector and the parameter of the potential, respectively. The potential contains
only single parameter rc. In the present investigation the potential parameter is
estimated by employing the values of the wave vector, q0, for which the form factor
takes a first zero value, i.e.WB(q)¼ 0 for q¼ q0. For the present model, the condition
is q0 rc¼ 1.3439 [21–24]. This model potential is continuous in r-space and it is a
modified version of the Ashcroft’s empty core model. Compared with the Ashcroft
empty core model potential, we have introduced (Ze2/r)exp(�r/rc) as a repulsive part
outside the core, which vanishes faster only than Coulomb potential� (Ze2/r) as
r!1.
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2. Theory

An alloy having c1N atoms of type 1 at positions {R1} and c2N atoms of type 2 at

positions {R2} is considered. We restrict c1þ c2¼ 1 so that N is the total number of

atoms. The number densities of the ion species are n1¼ c1n and n2¼ c2n, where

n¼ (N/�) and � is the total volume of the alloy. Here m1 and m2 are the masses of

the spheres c1N and c2N, respectively. Supposing �1 and �2 are the diameters of

c1N and c2N spheres, respectively, the packing fraction is given by:

� ¼
1

6
� n1�

3
1 þ n2�

3
2


 �
, ð3Þ

where

�i ¼
6��i
�

� �1=3

i ¼ 1, 2ð Þ:

The Fermi wave vector in the present formulation is defined as:

k3F ¼ 3�2Zn, ð4Þ

where Zn ¼ Z1n1 þ Z2n2 is the mean average valence electron density and Z1 and

Z2 are the valencies.
The electronic free energy of the alloy for some fixed configuration is obtained

by [1–6].

Fel R1,R2f g ¼ Feg þ F1 þ F2 R1,R2f g, ð5Þ

where F eg is the free energy of the electron gas, and F 1, F 2 are obtained via first- and

second-order pseudopotential perturbation theory.
By adding direct Coulomb interaction between ions, one obtains the effective

potential energy for the ion system. We need only the expectation value of this

effective potential averaged over some reference system, which is given by [1–6]:

Fps ¼ Feg þ FM þ F1 þ F2: ð6Þ

F eg is represented as:

Feg ¼
3

10
k2F �

3

4�
kF þ Ecore �

1

2
�egT

2

� �
Z: ð7Þ

Here, Ecore¼�0.0474� 0.0155ln kF , is the correlation energy contribution. The

constant �eg¼ (�kB/kF )
2 is the low temperature specific heat of the electron gas.Z is the

average valency.
The Madelung contribution FM is given by:

FM ¼
1

�

Z 1
0

c21Z
2
1 S11 � 1ð Þ þ 2c1c2Z1Z2 S12 � 1ð Þ þ c22Z

2
2 S22 � 1ð Þ

� 	
dq, ð8Þ

where Sij is the partial structure factor [27].
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Using the zeroth Fourier component of the bare pseudopotential, F 1 is obtained.

If we denote the q-th components by WBi (q), (i¼ 1, 2), then

F1 ¼ c1�1 þ c2�2ð ÞZn, ð9Þ

where

�i ¼ lim
q!0

WBi
qð Þ þ

4�Zie
2

q2

� �
: ð10Þ

The second-order (band structure) energy is given by:

F2 ¼
1

16�3

Z 1
0

c1c2 WB1
�WB2


 �2
þc21W

2
B1
S11

þ2c1c2WB1
WB2

S12þ c22W
2
B2
S22

( )
1

" qð Þ
� 1

� �
q4dq�

Z

2
�2 Tð ÞT2: ð11Þ

Here "(q) is the dielectric screening function. �2(T ) is the second-order correction

to the usual � factor describing the low temperature electronic specific heat and is

given by:

�2 Tð Þ ¼
2k2B
3�2Z

Z 1
0

dx
x2

x2 � 1
f xð Þ

c1c2 W1 �W2ð Þ
2
þc21W

2
1S11

þ2c1c2W1W2S12 þ c22W
2
2S22

( )
: ð12Þ

Here, Wi,(i¼ 1, 2) is the screened form factor [19–24] and f(x) is given by:

f xð Þ ¼
1

2
þ
x2 � 1

4x
ln

1þ x

1� x

����
����;x ¼ q

2kF
: ð13Þ

The free energy per particle of the mixture can be written as [1–6]:

Fhs ¼ c1�1 þ c2�2 �
Phs

n
: ð14Þ

Here �i (i¼ 1, 2) and Phs are the chemical potentials of the components and pressure,

respectively.
In the PY approximation, these are given by:

�i

kBT
¼ ln ni

2��h2

mikBT

� �3=2
� ln 1� �ð Þ þ ln

3X�i
1� �

� �

þ
3

2

3X2

1� �ð Þ
2
þ

2Y

1� �

� �
�2i þ

�Phs�
3
i

6kBT

� � ð15Þ

and

Phs

kBT
¼

n 1þ �þ �2

 �

�
1

2
�n1n2 �1 � �2ð Þ

2 �1 þ �2 þ �1�2Xð Þ

1� �ð Þ
3

, ð16Þ

where

X ¼
1

6
� n1�

2
1 þ n2�

2
2


 �
ð17Þ
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and

Y ¼
1

6
� n1�1 þ n2�2ð Þ: ð18Þ

Here, mi (i¼ 1, 2) denotes the masses of the spheres.
The internal energy is given by:

E ¼
3

2
kBTþ Feg þ FM þ F1 þ F2: ð19Þ

Substituting Equations (15)–(18) in (14) and using S¼�(@F /@T )�, we get

Fhs ¼
3

2
kBT� TShs, ð20Þ

where Shs is the entropy of the alloy of form [1–6].

Shs ¼ Sgas þ Sc þ S� þ S�: ð21Þ

Here Sgas represents the gas term, Sc is the ideal entropy of mixing, S� corresponds to

packing density � and S� arises due to the difference in diameters of the hard sphere

of first and second atoms.
The expressions for the various contributions are [1–6]:

Sgas

kB
¼ ln

e

n

emkBT

2��h2

� �3=2
" #

; m ¼ mc1
1 m

c2
2


 �
, ð22Þ

Sc

kB
¼ � c1 ln c1 þ c2 ln c2ð Þ, ð23Þ

S�
kB
¼ ln 1� �ð Þ þ

3

2
1�

1

1� �ð Þ
2

� �
, ð24Þ

and

S�
kB
¼
�c1c2n �1 � �2ð Þ

2 12 �1 þ �2ð Þ � �n c1�
4
1 þ c2�

4
2


 �2h i
24 1� �ð Þ

2
: ð25Þ

Finally, using Equations (6) and (25), the Helmholtz free energy per ion of the

alloy is given as [1–6]:

F ¼ Fps þ Fhs: ð26Þ

The heat of mixing of the binary alloy has been calculated as follows [1–6]:

�E ¼ �Feg þ�FM þ�F1 þ�F2, ð27Þ

where �F i¼F i(alloy)� c1F i1� c2F i 2; (i¼ eg,M, 1, 2) and c1 and c2 refer to the pure

components.
Also the entropy of mixing is given by [1–6]:

�S ¼ Shs � c1S1 � c2S2, ð28Þ

where Shs is the entropy of the alloy and S1 and S2 are the entropies of the first and

second atoms.
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3. Results and discussion

The present article deals with the study of thermodynamical properties like internal

energy (E), entropy (Shs), Helmholtz free energy (F ), heat of mixing (�E) and

entropy of mixing(�S) of Rbc1Csc2 liquid binary alloys as a function of con-

centration at constant temperature and pressure. The input parameters [27,28] used

in the present computations are tabulated in Table 1. The various contributions

to the internal energy as a function of concentrations for Rbc1Csc2 liquid binary

alloys are tabulated in Table 2.
From Table 2, it is observed that the value of F eg, F 2 and FM are negative while

F 1 has a positive contribution to the internal energy (E). The contributions F 1

and F 2 are potential dependent while the other contributions, i.e. F eg and FM are

independent of the potential. It is seen that the local field correction functions affect

the term F 2 only, which is the second-order band structure energies. The various

contributions to the entropy and the total entropy Shs for Rbc1Csc2 liquid binary

alloys is plotted in Figure 1.
Among the four contributions to the entropy, Sgas represents the gas term, Sc is

the ideal entropy of mixing, S� corresponds to packing density � and S� arises due

to the difference in diameters of the hard sphere of first and second atoms. It is seen

from Figure 1 that S� is negative while rest of the contributions are positive. The

maximum contribution to the total entropy comes from the term Sgas and the

minimum contribution from S�which depends only on the value of packing density �.

Table 2. Various contributions to the internal energy for Rbc1Csc2 liquid binary alloys at
melting temperature.

c1

Various contributions to the internal energy in au x 10�3

F eg F 1

F 2

FMH T SS

0.1 �78.2885 82.6545 �3.6629 �3.3774 �3.4587 �193.9419
0.2 �78.0890 80.7998 �3.7802 �3.4785 �3.5657 �192.1422
0.3 �77.8901 79.0309 �3.9120 �3.5947 �3.6878 �190.4340
0.4 �77.6922 77.3421 �3.9829 �3.6504 �3.7494 �188.8837
0.5 �77.4952 75.7281 �4.2671 �3.9198 �4.0248 �187.2081
0.6 �77.2993 74.1838 �4.0227 �3.6612 �3.7721 �186.1431
0.7 �77.1045 72.7051 �3.9691 �3.5939 �3.7107 �184.9608
0.8 �76.9111 71.2877 �2.6716 �2.2834 �2.4060 �185.0923
0.9 �76.7190 69.9279 �3.7551 �3.3543 �3.4827 �182.9024

Table 1. Input parameters.

Metal T(K) q0
2kF

[28] rc (au) �(au)[27] kF (au)[27] � [27]

Rb 313 1.00 1.8802 648.6826 0.3574 0.4313
Cs 303 1.07 1.8923 810.0596 0.3319 0.4311

26 P.B. Thakor et al.
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The contribution of Sgas increases the absolute value of the total entropy whereas
S� tends to decrease the total entropy of the system. As we have already stated,
Sc is the ideal entropy of mixing and its magnitude remains same at every
concentration. The nature of Sc! c2 curve is parabolic. It is also seen that as the
concentration c2 increases the term Sgas increases. The nature of Shs! c2 curve is
non-linear. All the contributions to the entropy are independent of the model
potential used in the present investigation as well as not influenced by the nature of
exchange and correlation functions. Finally, the total internal energy (E) and
Helmholtz free energy (F ) are calculated as a function of concentration and are
tabulated in Table 3.

It is noticed that the major contribution to the internal energy comes from the
structural part of the energy. The magnitude of the Madelung energy, jFMj is quite
large throughout the concentration range in comparison with other energy terms. Its
magnitude decreases with an increase in the atomic fraction of the heavier element.
The modulus of the band structure energy, jF 2j, has a maximum in the intermediate
range of concentration. The energy of the electron gas, F eg in the mixture varies
slightly with respect to concentration. The only positive contribution to the energy
comes from the first-order pseudopotential term, F 1 which decreases as we increase
the concentration of the heavier element. However, the aggregate effects of different
energy terms are such that the total internal energy (E) of the system is found to be
almost a linear function of the concentration. Hence, the Helmholtz free energy (F )
of the system is also found to be almost a linear function of the concentration.
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Figure 1. Various contributions to the entropy for Rbc1Csc2 liquid binary alloys.
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It is seen that the exchange and correlations affect the numerical values of internal
energy (E) and Helmholtz free energy (F ) in the order of 10�3au. Thus, the influence
of local field correction functions on the numerical values of internal energy (E) and
Helmholtz free energy (F ) is very small. The internal energy (E) and Helmholtz free
energy (F ) obtained due to the SS [26] local field correction function lies between
those obtained due to H [8] and T [25] local field correction functions, in general.
As the concentration in a particular system increases, it decreases the magnitude
of the internal energy (E) as well as the Helmholtz free energy (F ) of the system. The
heat of mixing (�E) and entropy of mixing (�S) for Rbc1Csc2 liquid binary alloys
as a function of concentration are plotted in Figures 2 and 3, respectively.

From Figure 2 it is seen that the heat of mixing (�E) is symmetrical at c2 ¼ 0:5.
Another important noticeable point is that the different forms of the exchange and
correlation functions have more influence on the calculation of the heat of mixing (�E)

–1.28

–1.32

–1.36

–1.40
0.1 0.3 0.5 0.7 0.9

C2

Rbc1 Csc2

H
T
SS

DE
 (

au
) 

x 
10

–3

Figure 2. Heat of mixing for Rbc1Csc2 liquid binary alloys as a function of concentration.

Table 3. Internal energy (E) and Helmholtz free energy (F ) for Rbc1Csc2 liquid binary alloys
at melting temperature.

c1

Internal energy E� 10�3au Helmholtz free energy F� 10�3au

H T SS H T SS

0.1 �191.7565 �191.4710 �191.5523 �212.5321 �212.2465 �212.3279
0.2 �191.7340 �191.4324 �191.5196 �212.9620 �212.6604 �212.7476
0.3 �191.7324 �191.4151 �191.5082 �213.2793 �212.9620 �213.0550
0.4 �191.7486 �191.4161 �191.5150 �213.5144 �213.1819 �213.2808
0.5 �191.7790 �191.4318 �191.5367 �213.6773 �213.3301 �213.4350
0.6 �191.8226 �191.4612 �191.5720 �213.7714 �213.4099 �213.5208
0.7 �191.8755 �191.5004 �191.6172 �213.7902 �213.4150 �213.5318
0.8 �191.9383 �191.5500 �191.6726 �213.7231 �213.3348 �213.4574
0.9 �192.0043 �191.6035 �191.7319 �213.5326 �213.1319 �213.2602

28 P.B. Thakor et al.
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than those of the internal energy (E) and Helmholtz free energy (F ). Therefore, the

heat of mixing (�E) of alloys is very much dependent on the choice of the forms

of local field correction function which enters into the calculation through the

dominant second-order potential term F 2. Thus, the form of the model potential

used in the computation also plays a vital role to predict such type of properties.

Moreover, it is found that the H [8] dielectric function gives the lower value of

the heat of mixing (�E) whereas the inclusion of the other dielectric functions,

i.e. T [25] and SS [26] give higher values and their contributions are negative. The

heat of mixing (�E) are obtained due to the T [25] and SS [26] local field

correction functions having nearly the same values. The calculated entropy of

mixing (�S) is symmetrical at c2 ¼ 0:5. The heat of mixing (�E) and entropy of

mixing (�S) of equiatomic alloys have been presented in Table 4 along with the

available experimental values [29] and other theoretical values [3].
From Table 4 it is seen that the heat of mixing (�E) is in good agreement

with experimental values [29] and are also better than those of the other

0.3
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Figure 3. Entropy of mixing for Rbc1Csc2 liquid binary alloys as a function of concentration.

Table 4. Heat of mixing (�E) and entropy of mixing (�S) of equiatomic Rbc1Csc2 liquid
binary alloys at melting temperature.

Properties

Present Others [3]

Expt. [29]
H T SS

Ashcroft model Shaw model

VS Shaw VS Shaw

Heat of mixing
�E�10�3au

�1.286 �1.280 �1.279 �1.727 �2.647 �0.003 �0.11 �0.054

Entropy of mixing
(�S) in (1/kB)

0.2491 �0.05051 –
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theoretical values [3]. In the case of entropy of mixing (�S), it is found that the other
result [3] gives negative sign while the present results do not produce any negative

sign. Thus, present result is far better in comparison to other [3] and it produces
correct sign.

Finally, we conclude that:

(1) The GB technique can be successfully used to study the thermodynamical

properties of Rbc1Csc2 liquid binary alloys.
(2) It is found that thermodynamical properties of Rbc1Csc2 liquid binary alloys

are sensitive to the form of the model potential used, structural part of the
energy, form of the local field correction function and volume of the mixing.

(3) The different forms of the local field correction functions have little effect on
the internal energy and Helmholtz free energy, whereas they significantly

affect the heat of mixing.
(4) The theory explains the symmetry of heat of mixing and entropy of mixing.
(5) The partial structure factor due to PY reference system [27] is also capable of

predicting the thermodynamical properties of Rbc1Csc2 liquid binary alloys.

Thus, the proper choice of the model potential along with the local field correction
function plays an important role in the study of the thermodynamical properties of

Rbc1Csc2 liquid binary alloys. This confirms the applicability of our model potential
[19–24] in explaining the thermodynamics of Rbc1Csc2 liquid binary alloys.
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